Approfondimenti
- Le onde stazionarie: nodi, antinodi e risonanza
Le onde stazionarie: nodi, antinodi e risonanza
I nodi sono frutto di interferenza distruttiva tra onde, gli antinodi sono frutto di interferenza costruttiva. Le onde stazionarie sono figure di interferenza tra onde identiche che si muovono in senso opposto: le onde stazionarie sono caratterizzate da punti che non oscillano mai (i nodi) e punti in cui l'oscillazione è sempre massima (gli antinodi). È facile produrre un'onda stazionaria su una corda legata a un'estremità: facendo oscillare la corda all'estremità libera, l'onda si propaga lungo la corda. Quando giunge all'estremità vincolata, l'onda viene riflessa e l'onda riflessa è capovolta rispetto all'onda incidente. Ogni volta che l'onda giunge a un estremo della corda, quello vincolato o quello legato alla nostra mano, viene capovolta e riflessa e l'onda risultante è data dall'interferenza delle onde incidenti e riflesse.
Si possono ottenere onde stazionarie a uno o più nodi, a seconda della lunghezza d'onda dell'onda principale. Nei nodi, dove si ha interferenza distruttiva tra l'onda incidente e quella riflessa, la corda resta immobile, mentre negli antinodi, dove si ha interferenza costruttiva, la corda oscilla con la massima ampiezza. La distanza tra due nodi consecutivi in un'onda stazionaria è metà della lunghezza d'onda originaria, /2, e le due estremità della corda sono sempre sede di due nodi. Se regoliamo la frequenza con cui facciamo oscillare la corda (per esempio, per mezzo di un vibratore applicato a uno degli estremi della corda) e quindi la sua lunghezza d'onda, possiamo ottenere differenti onde stazionarie. Se la lunghezza d'onda viene regolata in modo tale che la lunghezza della corda sia esattamente uguale a /2, avremo un'onda stazionaria con due nodi agli estremi e un antinodo al centro. Se regoliamo la frequenza in modo tale che la lunghezza della corda sia uguale a 2/2, l'onda stazionaria avrà tre nodi, uno al centro e due alle estremità della corda, e due antinodi nel punto di mezzo tra due nodi. Continuando ad aumentare la lunghezza d'onda della vibrazione impressa alla corda (diminuendo la frequenza), si avranno onde stazionarie tutte le volte che la lunghezza della corda risulterà un multiplo intero di /2.
Le lunghezze d'onda corrispondenti alla formazione di un'onda stazionaria, e le corrispondenti frequenze, sono dette lunghezze d'onda e frequenze di risonanza. In corrispondenza di questi valori si dice che la corda entra in risonanza, cioè oscilla con ampiezze relativamente alte, anche se l'ampiezza di oscillazione impressale dal vibratore (o dalla nostra mano) è piccola.
Riassumendo possiamo dire che per particolari valori di frequenza, detti di risonanza, la corda diventa sede di onde dette onde stazionarie, caratterizzate da nodi e antinodi, nei quali rispettivamente l'oscillazione è nulla o massima. Quando una corda è sede di un'onda stazionaria, sembra ferma perché i nodi sono fissi e gli antinodi vibrano con una data ampiezza. Si noti che le frequenze di risonanza dipendono solo dalla lunghezza del mezzo di propagazione e sono indipendenti dalla natura del mezzo, quindi si possono ottenere anche facendo vibrare un filo metallico o qualunque altro materiale.